If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0(t)=-16t^2+180
We move all terms to the left:
0(t)-(-16t^2+180)=0
We add all the numbers together, and all the variables
-(-16t^2+180)+t=0
We get rid of parentheses
16t^2+t-180=0
a = 16; b = 1; c = -180;
Δ = b2-4ac
Δ = 12-4·16·(-180)
Δ = 11521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{11521}}{2*16}=\frac{-1-\sqrt{11521}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{11521}}{2*16}=\frac{-1+\sqrt{11521}}{32} $
| 9-2x=-2(x-1) | | 2(3a+2)=-4 | | 0(t)=-16t^2+150+30 | | -15h+9-11h+16=-27 | | y-3/8=15/2 | | 4/9x+7=1/2 | | j-37/4=10 | | x=100-5x | | 5(x-2)=-18+5x | | 7⋅3^x+1-3^x-1=186 | | 6y=y+15 | | X-20=56(2x+3)-8 | | 3/4x8=12 | | -3x-4(5x+16)=-166 | | 2(4y+-3)=-14 | | 32=4x-6(2x-20) | | 3/z+8=6 | | 2(3x+4)=2x+12 | | 6-x=191 | | x2=4x+32 | | -2(-3x-2)=-7 | | x/10+8=3 | | -7+5(7x-2)=15 | | 3x+13=113−7x | | 11=3u-7 | | 4x^+3x-2=0 | | 2d+6=20 | | -5(x+3)+21=13-6x | | -4+5x=3x+6+2x | | 10(t)=-16^2+30 | | (3+k)4=4 | | -3=3-f |